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The behavior of the partial-wave transition matrix is discussed for large values of the angular momentum. 
For physical values of the angular momentum, it is shown that the iV-channel T matrix vanishes in the 
high angular momentum limit. The validity of the optical model is discussed. In the Gelfand-Levitan 
formalism, it is shown that the two Jost functions coincide as the angular momentum goes to infinity along 
the real axis. For the Yukawa-type potentials, it is shown that the transition matrix reduces to its Born 
term as the real part of the complex angular momentum variable goes to infinity. 

I. INTRODUCTION 

THERE is considerable interest in the behavior of 
the partial-wave scattering amplitude for large 

values of the angular momentum. Various treatments 
have been given in conjunction with recent develop­
ments in scattering theory.1 

In this note we discuss some asymptotic behavior of 
the transition matrix. First, using Martin's bound on 
Bessel functions,2 we show that the iY-channel scattering 
matrix approaches the unit matrix as the physical 
angular momentum goes to infinity. After discussing 
the validity of the Born approximation, we apply the 
general formalism to a two-channel Yukawa potential, 
and compare the result with the optical-potential cal­
culation of Martin. 

Next, we use Newton's generalization3 of the Gelfand-
Levitan formalism to discuss the 5 matrix for continuous 
real values of the angular momentum. It is shown that 
for any potential majorized by a Yukawa potential, 
the two Jost functions coincide as the angular momen­
tum increases to infinity along the real axis. 

Finally, we deal with the question of a superposition 
of Yukawa potentials and complex angular momentum. 
It is shown that the transition matrix reduces to its 
Born term as fast as (ReX)-1 as (ReX) —> + oo, where X 
is the complex angular momentum variable. 

In Sec. II, the Schrodinger equation for the present 
problem and its formal solution are given. In Sec. I l l , 
the S matrix is denned, and convergence of the Born 
series is discussed. In Sec. IV, two-channel problems 
are studied in detail. In Sec. V, we apply Newton's 
generalization of the Gelfand-Levitan formalism to the 
discussion of continuous values of the angular momen-
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turn. In Sec. VI, we discuss the asymptotic behavior in 
the complex angular momentum plane. Readers who are 
interested only in complex angular momentum may 
omit Sees. I through V. 

II. FORMAL JV-CHANNEL SCHRODINGER EQUATION 

In this section, we discuss formal solutions of the 
radial wave equation and their convergence properties. 
The radial wave equation for a spherically symmetric 
potential takes the form 

/ d2 X2-
(—+K2 

\dx2 x2 
•V(x))ux(K,x) = 0. (1) 

Here K is the diagonal linear momentum matrix, V (x) is 
the real and symmetric potential matrix, and (X— \) is 
the angular momentum common to all channels. We set 
fi = c=2m= l,4 and assume that 

Jo / 
J 0 

x\Vij(x)\dx<oo and / x2\ Vij(x)\dx<<x>. (2) 

With the aid of the diagonal kernel matrix 

Gx(Kx,Kxf)^'-iK-l{jx(Kx)h^l){Kx,)e(x,-x) 
+jx(Kx')hxv(Kx)6(x-x')}, (3) 

where [Ax
(1) (#*)]*,•= (Txki/2yi2Hxa)(kiX)dih and so 

forth, we transform Eq. (1) into the integral equation 

u\(K,x) = 2ij\(Kx) 

+ 2i f hK(x,x')V(x')jx(Kx')dx', (4) 
Jo 

4 The equation 2w» = l does not necessarily imply that all 
channels have the same mass. See. R. G. Newton, J. Math. Phys. 
2, 188 (1961). If the masses are all equal, and the potentials are 
restricted so that the Lehmann ellipse exists, then one can use it to 
derive the asymptotic properties. See, for instance, L. Fonda, 
L. A. Radicati, and T. Regge, Ann. Phys. (N. Y.) 12, 68 (1961). 
In our case, more general potentials are considered. 
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where As X —><*>, u\(K,x)—>2ij\(Kx), and this difference 
vanishes at least as fast as X-1. 

I\K{OC,X') 

00 f °° . III. DEFINITION OF THE S MATRIX AND 
= X; / dxiGx(Kx,Kxi)V(xi) CONVERGENCE OF THE BORN SERIES 

«=o Jo 
In order to extract the S matrix from the regular 

w f j „ ,Tr rr \T7/ \ solution, we take u\(K.x) for large x. 
X dx2Gx(Kxi,Kx2)V(x2)-' & 

Jo »\(K,x) -> ihxi2)(Kx)-ih^l)(Kx) 

X j o dxnGi(Kxn-hKxn)V(xn)Gx(Kxn,Kx'). (5) xU-iK'1 T jx(Kx')V(x')u^Kx')dx'\. (11) 

The wave function u\(K,x) is the regular solution of XT ^, . . ^ , . , , £ , 
, 0 , ..,. ,- T i .• i r Now the symmetric i matrix can be denned as 

the Schrodmger equation. I ts relation to other types of J 

solutions is given in Appendix A. T(\ K) = S(\ K) — l— —iK~112 

Using the above expression, we shall derive bounds on 
wave functions and on the transition matrix. In order to [ r00 ] 
simplify the discussion, we introduce for any matrix A XI j dx ]\{Kx )V(x )U\(K,x ) \K . (12) 
a corresponding matrix | A | such that | 4̂ | # = | A a |, and ° 
we will say that \A\<\B\ if \A\yK\B\v. Then it W e s h a l l first p r o v e t h a t t h e r i ght-hand side of Eq. 
follows from Martin s bound on Bessel functions2 that ( 1 2 ) v a n i s h e s as X ^ oo, and then show, with some 

\r (w v f\\ < ( '/i\\U2T r&\ additional restrictions on the potential, that the T 
\UX{KX,KX ) | ^ (TXX J IK) i , (Oj m a t r . x r e d u c e s t Q t h e B o m t e r m 

where / is the unit matrix and X is half-integral oo 
(physical). Thus TX3

B{\K) = 2{k%k3)-
1* j jx(k&)Vij(x)jx(kjx)dx. (13) 

\hK(x,xf)\tj^(irxxf/2\yi* ° 
X Z (#/2X)1/2 f xW(x)dx, (7) 

n~0 JQ 

To show that Tl3 —» 0 as X —> oo, we write 

| T(\,K) | ^ | T*(^K) | +K-** f | MKx)V(x) \ 
Jo where W(x)=*m&Xij\ Vi3{x) \. 

For sufficiently large X, this sum converges and x |U \{K yx)-2ij x(Kx) \ dx K~l/\ (14) 

| / X K ( * , * 0 | i 3 < (TXxyz/iVxyv-NMl, (8) T h e bound on jx(Kx) implies that 

where 

M= 
Jo 

while the second term in Eq. (14) is smaller than 

r TJ7/VJ \T*(\,K)U&(kikA\y*[ \vti(x)\**dx, (15) 
= / xW(x)dx. J0 

Jo 
Next, we obtain a bound on the wave function. From 

Eq. (4), one can derive 

\ux(K,x)-2ij\(Kx)\ 

^2 \hK(x}x')V(x')\\jx(Kx')\dx'. (9) 
Jo 

2\K-1/2[ f dxdx' 

X\jx(Kx)V(x)hK(x,x')V(x')jx(Kx')\K~^ (16) 

From the bounds on j\(Kx) and I\K(X,X'), it follows that 
Using Martin's bound2 \j\(Kx)\ ^ \K\x(2\)"l/

2, we the above expression is smaller than 
obtain 

N*(Tkik3)w |X[(2X)1/2-iVikf]}-1 

| ux (K,x) - 2ijx (Kx) \ij 

$ 2N(TX\ 2X)1/2££(2X)1'2-xVM]~1 x l / a^(*)<fo j . (17) 

f 
Jo 

ymW(y)dy. (10) Thus both terms on the right-hand side of Eq. (14) 
vanish at least as fast as X-1 when X —» oo. 

file:///A/yK/B/v
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While this result holds for a quite general class of 
potentials, one may expect a stronger conclusion if 
additional restrictions are imposed on the potential. In 
particular, if the potential is majorized by a Yukawa 
potential: 

\Vij(x)\^G<r*x/x, where rj>0, (18) 

then by using the well-known relations5 

ex-*([a2+^+i?2]/2a*) 

= ir(ab)1/2[ ri*Max)Mbx)dx, (19) 
Jo 

and 

Qi-iix) -> [>/(2X-1)]1/2[>- (*2- ir*J(*?-1)1/4, (20) 

as X —> oo, where Q\ (x) is the Legendre function of the 
second kind, we can deduce that 

| T*(\K) | < ^GQx- | [ (W+V+i? 8 )^**] . (21) 

Making use of the Schwarz inequality, one can show 
that the other term on the right-hand side of relation 
(14) is less than 

(^kikj)
l^CPN2l(2\y^-NMj' 

xK i 
Jo 

nl/2 

Jx2 (k&)er**dx / J\2 (kjx)e-*xdx (22) 

By Eq. (19), this is equal to 

77-l^l/2G2AT2[(2X)l/2-A^]-l] 

X[<3x-i(l+T7
2/2^i

2)<2x-i(l+f/2^)]1/2. (23) 

From Eqs. (20), (21), and (23), we conclude that every 
element of the T matrix falls off exponentially as X —> oo. 

Next, we study the validity of the Born approxima­
tion. The Born approximation will be valid for large 
angular momentum if the error matrix 

p^X^^lT^K^T^iX^yT^iKK) (24) 

vanishes as X —» oo. From the preceding discussion, we 
can give an explicit upper bound on this error matrix: 

p.i(A,xK*(x)i; WuQijo 

where 

and 

X L Wfrfr&lZafaK), (25) 

i?(X) = 27r1/2|C(2X)1«-iVM], 

WvQiJO = f *"» | VvWMkjx) I dx, 
Jo 

i r i 
Zij(\,K)= / Vij(x)j\(kix)j\(kjx)dx\. 

I Jo i 

It has previously been shown that W(\,K) vanishes 
as X •—> oo for a rather general class of potentials. But 
the lower bound on Z(\K) cannot be obtained easily 
unless additional restrictions are imposed on the 
potential. In the following section, we shall take a two-
channel Yukawa potential and pursue the problem 
further. 

IV. TWO-CHANNEL PROBLEMS WITH 
YUKAWA POTENTIALS 

In order to gain a physical insight into the validity 
of the Born approximation, we discuss the application 
of Eq. (25) to the two-channel problem with pure 
Yukawa potentials. The potential matrix takes the form 

\/ae~ax be~fix\ 
V(x) = -( ), 

xXbe-t* ce~yx/ 
(26) 

where a, j3, and y are positive. In the present discussion, 
one can assume a, b, and c to be positive without loss of 
generality. 

Thus, for any set of af, 0', and y' such that 

0<a '<a /2 , 0</3'</V2, 0 < 7 ' < T / 2 , (27) 

we have by the Schwarz inequality 

Wn(\K) ^ (a2/4a0ex-|(l+2(«~a')2Ai2), 

W2l(\K)<C (62/4/50<2x-i(l+2^-^)2/^i2), 
W22(\K)^ (c2/4y')Q^(l-2(y-y')2/k2

2), (28) 
Z11(X,iT)=(a/2)Qx-i(l+«/2^1

2), 

Z22(X,^)=(c/2)Qx-|(l+72/2^22), 
Z12(X,iT) = Z21(X,Z)=(V2)ex-i([^i2+^22+/32]/2^1^2). 

Thus from Eqs. (20), (25), and (28), we conclude that 
Pij —> 0 exponentially as X —» oo if the following condi­
tions are met: 

and 
min{ (a-a')\ O3-0')2} >max{a2/4, 7

2 /4} , (29) 

6 G. N. Watson, Theory of Bessel Functions (Cambridge Uni­
versity Press, New York, 1958), 2nd ed. 

min{*1*G?-/J')*, mP-P)\ £i2(Y-7')2, k2
2(a-a')2} 

> ( W 4 ) { ( £ i - £ 2 ) 2 + £ 2 } . 

Let us now assume that a', fi', and yr are such that the 
inequalities (27) and (29) are satisfied. We then use 
the Born approximation to determine the ratio of the 
absorption to the scattering cross section. For channel 1, 

exp{-2X InffOM,; f3)/H(khk2; a)}, (30) 

where 

H(x,y; a)= (x2+y2+a2)/2:ry 

- (tx2+y2+a2y/4xy-l)1'2. 

If, in particular, ki=k2 and 

20>a, 2/3>y, 27>0, and 2a>0, (31) 



S M A T R I X F O R H I G H A N G U L A R M O M E N T U M 2821 

then one can choose a', /?', and 7' satisfying our condi­
tions and prove that the Born approximation is valid 
for high angular momenta. According to the inequalities 
in Eq. (31), the range parameter a for the scattering 
potential must be greater than one half of the absorption 
parameter 0, but it cannot be as large as fi, and vice 
versa. 

From Eqs. (30) and (31), we conclude that if 

a <j8 < 2a, then (<rabs/0 —> 0 as X —» 00 ; (32) 

if, on the other hand, 

0<a <2£, then (o-abs/<xSc) —» °° as X —> 00. 

Martin made a similar analysis using an optical 
potential2 

V(x) = (gi/x) exp(—amx)—i(g2/x) exp(—0m#), (33) 

and derived the result that6 

am<pm<2am implies that ((Xabs/csc) —•> °° 
as X —» 00. (34) 

Comparing the inequalities (32) and (33) in a 
straightforward manner, we see explicitly that the two-
channel and optical-potential models are not equiva­
lent in the limit of large angular momentum. The optical 
model is an approximation of the many-channel 
formalism. Its validity for special cases has been dis­
cussed by various authors.7 

V. ASYMPTOTIC BEHAVIOR IN THE 
GELFAND-LEVITAN FORMALISM 

In the preceding discussion, we have been concerned 
with iterative Born series. In this section, we shall deal 
with potentials which can be fit into the framework of 
the Gelfand-Levitan-Newton formalism and which can 
be majorized by a Yukawa potential. It will be shown 
that the two Jost functions coincide as X goes continu­
ously to infinity along the real axis. 

For simplicity, we shall treat single-channel scattering 
and set the linear momentum equal to unity. 

According to Newton,3 the Schrodinger equation can 
be transformed into the following integral equation for 
the regular solution <t>\(x): 

H{x,y) satisfies the differential equation 

x*(d*/dx*+l)H(x,y) = y*Zdydy*+l~V(y)2H(x,y),(V) 

subject to the boundary conditions 

V(x)=- (2x)-ld/d*£H(x,x)/x], (38) 

and#(x,0) = #(0,*) = 0. 
From the continuity of H(x,y) and the boundary 

conditions on it, we know that 

\H(x,y)\$Mxy, (39) 

where M is a positive constant. Using the Schwarz 
inequality, Eq. (39) and the fact that 

/ y*j\(y)<r">dy=br # / rfJx*(y)dy, (40) 
J 0 J a J0 

we obtain 

|*x(*)-ix(*)|<(Af*)(2«)- l««" 

XJ f d{Qn(l+?/2)} . (41) 

It is shown in Appendix A that 

[/+(X)ei(,r/2) (X_i) — f~(\)e~iiir,2) ( x - i ) ] 

= l \ Mx)V(x)4>x(x)dx, (42) 
Jo 

where 

/±(X) = /(X,±*)|*_i. 

Using Eq. (41), we establish that 

| /+(x)ei(7r/2)(X-i)-/-(X)e-(i,r/2)(x-*) | 

^irGf Jx
2(x)e-axdx+2MGa~1 f QX-h(l+e/2)d£ 

JO J a 

*xO*0=ix(#) -f K{xh 
Jo 

y)j\(y)dy. (35) 

The normalization of Eq. (35) is discussed in Appendix 
A. The "kernel function" K(x,y) can be constructed 
from the physical solutions of the Schrodinger equation 
and can be represented as 

K(x,y) = y*H(x,y)=f: Cor^M-iC^jViCv). (36) 
x=o 

6 In reference 2, the inequality am</3m is not explicitly given. 
Martin's result, however, includes Eq. (34). 

7 See, for instance, H. Feshbach, Ann. Phys. (N. Y.) 5, 357 
(1958). 

where 

C / j\(x 
Jo 

X / jx(x)e~axl2dx, (43) 

\V(x)\^Ge~ax/x, a>0. 

The first term on the right-hand side vanishes exponen­
tially as X —» oo. The second term, by the Schwarz in­
equality, is smaller than 

(MG/a)(2a)~112 

xjex( l+o?/8) /" gx_ | ( l+? /2 )^J . (44) 

Q\(x) is a monotonically decreasing function of x, and 
the above quantity vanishes exponentially as X —-» oo. 
We have thus shown that one Jost function approaches 
the other as the angular momentum goes to infinity 
along the real axis. 
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VI. ASYMPTOTIC BEHAVIOR IN THE 
COMPLEX PLANE 

In this section, we consider single-channel scattering 
by a superposition of Yukawa potentials. Our discussion 
is extended to the complex right half-plane. We show 
that the 5 matrix reduces to its Born term by 
0((ReX)~1+e)> where e is a small positive number. 

In order to treat the iterative series for complex X, 
we use the following representation for the Green's 
function: 

Gx(kx,kx')= -ik-'Uxikx^x^ikxyix'-x) 

+j\(kx'W»(kx)0(x-x')l 

2 r jx(kfx)Mk'xf) 

where 

= — / dk'-
7T Jo k'2-k2-h 

(45) 

This representation can be found on p. 429 of refer­
ence 5. 

We assume that the potential can be represented as 

V(x) 
Jo 

dmo-(in)e-»lx (46) 

For simplicity, the case discussed below will correspond 
to <rGui) = 5(M~MI)- Generalization to other "reasonable" 
a(fxi) is trivial. 

Then I\K{X,X') of Eq. (5) takes the form 

* r00 »H-I dki 

/X*(*,«O=E / n 7 
n=0 J0 i-1 ki2—k2 — t€ 

Xjxik^Mkn^x'M C x (M<- i ) , (47) 

where C x ( M i ) = Qx-*([W+*/+/i2]/2*<*y). Thus the 
T matrix becomes 

1 * rM n+i dki 

r(M0-r*(x,*)=-£ / II 
k n=o J0 i=i ki2—k2—ie 

XCx(*,fti)ffcx(*i,*w), (48) 

TB(\,K) = -±TCx(k,k). 

The behavior of TB(\,K) for large values of ReX is well 
known. We shall show in the following that the right-
hand side of Eq. (51) is uniformly convergent as 
ReX —» oo, and it vanishes faster than TB by a factor 
(ReX)-1+*. 

We shall first show that the integral 

Jo 

dki 

?Z~W — 
-C\(ki-i,ki)Cx(ki,ki+i) (49) 

u 

is bounded by a sum of two quantities, in each of which 
the explicit dependence on &t_i and on ki+i are factored 
out and that each term vanishes as ReX —-> <*>. We shall 
then show that the series (48) is bounded by a power 
series whose sum will vanish as ReX —> co. 

Let us divide the integral into two parts : The first 
will be taken from zero to w(ReX) where m(ReX) is 
greater than k and is monotonically increasing function 
of ReX. The second integral will go from m(ReX) to 
infinity. This procedure is quite similar to the summa­
tion used by Froissart in calculating the asymptotic 
behavior in the Mandelstam representation.8 

The first integral is 

/ . 

w<ReX> dki 
-Cx {ki-\,k%)Cx (ki,ki+i), (50) 

where the contour avoids the singularity with a small 
semicircular detour of radius kr(Re\) into the lower half 
plane. The radius is chosen so that r(ReX) is a mono­
tonically decreasing function of ReX. Then the integral 
is less than 

— f 
;ReX) J o 

w(ReX) dki 
-Cnex(ki-i,ki)CRex(ki,ki+i) (51) 

kr(Re\)JQ ki+k 

in absolute value. 
I t then follows from the Schwarz inequality 

[CReX (kifa) J ^ CfteX (kijk^CneX (kj,kj), 

that for sufficiently large ReX, the expression (51) is 
smaller than 

2 ( R e A - l ) \ 

/k+m(Re\)y 
In 

[Hjk^kj-u n)H(ki+hki+u »)H2«-»(™,™] M)]ReX/2 

{ [ ( l + / x V 2 ^ _ 1 2 ) ^ l ] [ ( l + M V 2 ^ + l 0 2 - l ] [ ( l + M V 2 ^ 2 ) 2 - l ] 2 } 1 / 8 , 

where r(ReX) is chosen so that 

MReX) -> k{E(mym; M)] 6 R e \ (53) 

b being a small positive number. H(ki,kj,n) is defined 
in Eq. (30). In Eq. (52), we have factored out both &*_i 
and ki+i dependences. 

In the second interval, w(ReX)<^<oo, one must 
consider 

J Wi 

dki 

(ReX) k?~k2 
-£x(ki-iA)Cx(Kkl+i). (54) 

8M. Froissart, Phys. Rev. 123, 1053 (1961). 
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wn 

\C\(kt,kj)\ ^Cnexiki.kj) 

We note the well-known relation9 The solution ux(k,x) of the Schrodinger equation (1) 
satisfies the integral equation 

^{Hik^kj^))ReHn
{k^kjy+^ ( 5 5 ) «x(*,*) = « x ° ( M ) + / Gx(kx,kx')V{x')ux(Kx>)dx'. (Al) 

J o 

and also, for large enough m, w h e r e Uyo{^x)=z2ijx(kx). For simplicity, we consider 

[
tki+k)2+u2"\ t n e single-channel case. 

— \<2am{kjk^\ (56) Now as x -> oo 
where t] is a small positive number and am is a mono- U\(k,x) —> j 1 + - / j\(kx')V (x')u\(x')dx' \ 
tonically decreasing function of w(ReX), and therefore * * ^ ° 
of ReX. Thus the quantity in Eq. (54) is smaller in Xexp{irkx—-Lw(\—L)~]} 
magnitude than 

- e x p { - C ^ - M * - i ) ] } - (A2) 
(ti-ift^O^^Cff (*w,**-u i*)ff (fci+i,ft*.i; M)]RCX/2 

On the other hand, in Froissart's paper,10 the regular 
y f YH(h h • ^lReX (57^ solution <£x(#) satisfies the integral equation 

^m(ReX) ki2 — k2 \ rx 

fa (k,x) = jx (kx)+- I Ijx (kx)nx (kx') - jx (kx')nx (kx)2 
Here again we have factored out the ki-i and ki+\ ^ ° VT/Y >\^ (h 'W > f \ z \ 
dependences. Now we take m(ReX) = ^(Rex)1-e ' , where X v& )<t>x^x )dx ' ( A J ' 
e' is a small positive number. Then for sufficiently large F o r l a r g e ^ 0 x ( J f e^ t a k e s t h e f o r m 

ReX, the integral in the above expression is smaller than 
<t>x(kyx) -> (2ik)-lf(\ -k)e-^-» 

l\ # dW^<2*r^ (ReX) - i+« 'n (58) f / ( X , £ ) 
J fc(ReX)1_f' X | exp[iw(\—i)] e x p { i [ ^ — | T T ( X — | ) ] } 

I /(*>-*) Thus each ki integration in the second interval gives ] 
a cutoff factor ReX-t1-^, where e is a small positive - e x p { - ^ x ~ | 7 r ( X - J ) ] } | . (A4) 
number. Let us return to the integration over the first 
interval. We note that the length of the circular detour W e . 
vanishes as exp[—a (ReX)"], where a is a constant / ( M ) expL*ttr(X— 2) j 
depending upon k, /*, and b. We also note that the con- a

 x . x 

tribution from the first interval vanishes faster than f&> ~k> expL—5«r(X—^)J 
that from the second as ReX —> 00. Therefore, each t h e y o s t f u n c t ions . 
integral, whether it is in the first or second interval, will F r o m E q s ( A 2 ) a n d (A4), we obtain 
contribute a factor (ReX)~~(1""°. Then one can bound the 
original series for T(\,k)-TB(\k) in Eq. (48) by a f(\,k) 
convergent power series, which will vanish faster than S(\,k) = — — exppir(X— 2)] 
the Born term by 0( (ReX)-^- e ) ) . This completes the f(X> ~~k> 
proof. .00 

= 1 + ^ - 1 / j\(kx)V(x)ux(k,x)dx, (AS) 
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In this Appendix, we give the relation between the —i'C'(\v(\(\J rxn 
various regular solutions which appear in this work. / Jx^V\xW*\x)dx' ( A 7 ) 

J 0 
9 S. Okubo (to be published). 10 M. Froissart, J. Math. Phys. (to be published). 


